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1. Context

In this paper, we provide results on the Ramsey number and saturation of diameter four cater-
pillars. We refer to such trees as tristars. This work began as a joint project with Spencer Brooks
during the 2011 Graphs, Groups, and Geometry REU at the University of North Carolina-Asheville.
We obtained the exact Ramsey number for a particular subfamily of tristars called fountains and
showed that fountains are Ramsey unsaturated. Additionally, we calculated bounds on the Ramsey
number of “regular tristars”. The work continued at Clemson University with Emily Nystrom as we
computed the bounds for more general tristars, and in some cases, the bounds are slightly tighter
than currently known ones.

Consider simple, undirected, and connected graphs G1 = (V1, E1) and G2 = (V2, E2). Recall that
the Ramsey number of G1 versus G2, r(G1, G2), is the smallest integer n so that every two coloring
(say, with red and blue) of the edges of Kn contains either a monochromatic G1 or G2 as an edge-
induced isomorphic subgraph. When G1 = G2, we write r(G1). A graph G is Ramsey saturated, or
simply saturated, if for every edge e /∈ E(G), r(G + e) > r(G). Otherwise, G is unsaturated.

The caterpillar C(m1, . . . ,mk) consists of a path on k ≥ 1 vertices with mi leaves adjacent to
the ith vertex of the path. We assume m1,mk 6= 0. For k = 1, C(m) is a star and it is known [3]
that

r(C(m)) =

{
2m− 1 m even

2m m odd.

Though it is conjectured almost all graphs and all non-star trees of order at least 5 are unsaturated,
stars are saturated [2]. For k = 2, we write B(m,n) and call the graph a bistar. In [1], we see
r(B(m,n)) ≥ 2m + n + 2 for n ≥ m, and equality holds when m ≥ 2 and n ∈ {m,m + 1}. They
showed that in general

r(C(m1, . . . ,mk)) ≥ |V |+ n− 1

where

n1 =

dk/2e∑
i=1

m2i−1 + bk/2c n2 =

bk/2c∑
i=1

m2i + dk/2e

n = min{n1, n2}.

Moreover, they proved all bistars are unsaturated.
Our work continues this progression by examining k = 4, the tristars. For v ∈ V, let

B(v) = {u ∈ V : uv ∈ E blue}

be the set of blue neighbors and dB(v) = |B(v)| be the blue degree of v. The set of red neighbors
and the red degree, respectively, R(v) and dR(v), are similarly defined. We begin by establishing
bounds on r(C(a, b, c)). Without loss of generality, assume c ≥ a and a, b, c ≥ 1.
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2. Bounds on the Ramsey number of tristars

Perhaps the best lower bound on the Ramsey number of a tree T originates from viewing the
tree as a bipartite graph with parts t1 and t2, t2 ≥ t1 [5]. Then r(T ) ≥ max{2t1 + t2 − 1, 2t2 − 1}.
Applying this to the tristars yields

r(C(a, b, c)) ≥


2(a + c) + b + 3 if 2(a + c) > b

2b + 3 if 2(a + c) ≤ b

a + c + 2b + 4 if 3 ≤ a + c < 2b + 3

2a + 2c + 1 if 2b + 3 ≤ a + c.

(1)

We slightly improve this bound for trees containing a single vertex of high odd degree relative to
the other vertices.

Proposition 2.1. Let G be any graph such that the maximum degree ∆ = ∆(G) ≥ 3 and odd.
Then R(G) ≥ 2∆.

Proof. Consider K2∆−1. For each vertex vi ∈ {v0, v1, . . . , v2∆−2} of K2∆−1 and integer j ∈
{

1, . . . , ∆−1
2

}
,

color every edge vivk blue, where k = (i+ j) mod (2∆− 1). Color the remaining edges red. Notice
that for each vi, dB(vi), dR(vi) = ∆− 1. ¨̂

This is a sort of converse to Theorem 9.2.2 (an Erdös conjecture) in [4]:

Theorem 2.2. (Chvátal, Rödl, Szemerédi, and Trotter) For every positive integer k, there exists
a constant c so that

r(H) ≤ c|H|
for all graphs H satisfying ∆(H) ≤ k.

In the case when 2(a + c) ≤ b for odd b, Proposition 2.1 gives r(C(a, b, c)) ≥ 2b + 4.
For an upper bound on the Ramsey number of tristars, we want to use the probabilistic method,

but there is no clear way to count the number of possible tristars appearing in a complete graph. We
plan on developing a way to do this at a later time. An adequate upper bound using a constructive
approach is to set m = max{a, b, c} and observe that r(Cm

3 ) := r(C(m,m,m)) ≥ r(C(a, b, c)).
Hence, bounding the Ramsey number of the m-regular tristar Cm

3 bounds the Ramsey number for
all tristars.

Proposition 2.3.

r(Cm
3 ) ≤ 5m + 4.

Proof. Omitted. ¨̂

3. Ramsey number and saturation of fountains

Denote the fountains by Fb := C(1, b, 1). Call the vertex of degree b+ 2 the center vertex vc, the
vertices of degree 2 the branches b1, b2, and label the leaves `i beginning with b1 and moving across
to b2. See Figure 1 for an example with F3. Using Equation 1, Proposition 2.1, and some simple
observations for b = 1, 2, we obtain

r(Fb) ≥


8 b = 1

9 b = 2

2b + 3 even b ≥ 4

2b + 4 odd b ≥ 3.

(2)

It turns out that this lower bound is precisely the Ramsey number of the fountain. To prove this,
we need the following results.
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vcb1 b2

`1

`2 `3 `4

`5

Figure 1. We use these labels to identify the fountain in our proofs.

Lemma 3.1. If n ≥ 5 and is an odd integer, then there exists v ∈ V (Kn) such that dB(v) and
dR(v) are even.

Proof. We proceed by contradiction. Suppose there exists a two-coloring of Kn such that all vertices

v ∈ V (Kn) have an odd blue degree. Then the number of blue edges is
∑n

i=1 dB(vi)
2 , which is not

an integer. Thus, dB(v) must be even for some v ∈ V (Kn). Note that if dB(v) is even, then so is
dR(v). ¨̂

In conjunction with the Pigeonhole Principle, Lemma 3.1 implies

Corollary 3.2. Suppose b ≥ 4 and is even. Then there exists a vertex v ∈ V (K2b+3) such that
dB(v) ≥ b + 2 and dR(v) ≤ b.

We now prove the upper bound.

Proposition 3.3.

r(Fb) ≤


8 b = 1

9 b = 2

2b + 3 even b ≥ 4

2b + 4 odd b ≥ 3.

Proof. Here, we only prove the even case when b ≥ 4. The odd and the b = 1, b = 2 cases are similar
to the following proof. By Corollary 3.2, there exists a v0 ∈ V (K2b+3) such that dB(v0) ≥ b + 2
and dR(v0) ≤ b. Let T ⊆ B(v0) such that |T | = b+ 2, and let S = V (K2b+3) \ (T ∪ {v0}). To avoid
a blue Fb, we observe that for any two vertices t1, t2 ∈ T and s1, s2 ∈ S where t1 6= t2 and s1 6= s2,
the edges t1s1, t2s2 cannot both be blue; otherwise, v0 serves as vc since it has the sufficient number
of blue neighbors, t1 and t2 are the branches, and s1, s2 are `1, `b+2. For this reason, it must be the
case either that s1 = s2, that t1 = t2, or that no blue edges are between S and T :

(1) Exactly one vertex s1 ∈ S satisfies |B(s1) ∩ T | ≥ 1.
(2) Exactly one vertex t1 ∈ T satisfies |B(t1) ∩ S| ≥ 1.
(3) For all vertices t ∈ T, |B(t) ∩ S| = 0.

Case 1: Notice that for all s ∈ S \ {s1}, |R(s) ∩ T | = b + 2 creating a red fountain. Select any
vertex si ∈ S \ {s1} to be vc, and since |R(si) ∩ T | = b + 2, we have sufficient leaves and branches.
Each t ∈ T has |R(t)∩S| ≥ b−1 so choose appropriate vertices, distinct from si and s1, for `1, `b+2.

Case 2: Notice that because |R(si)∩T | ≥ b+1 for all vertices si ∈ S, no vertex s1 ∈ S can share a
red edge with v0 or with another vertex s2 ∈ S. Indeed, if such an edge was present between s1 and
s2, then s1 serves as vc, and s2 along with s1’s b−1 red neighbors in T are leaves. The remaining 2
vertices ti ∈ (R(s1)∩T ) are the brances, and because each t ∈ T \{t1} has |R(t)∩S\{s1, s2}| = b−2,
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select any 2 to be `1, `b+2. An analogous argument also reveals a red fountain if a red edge is present
between v0 and some vertex s ∈ S.

Thus, those edges must all be blue; yet, this creates a blue fountain. With this coloring, let v0

be vc. Select t1 to serve as b1 and a vertex s1 ∈ (B(t1)∩ S) as `1. Now, pick a vertex s2 ∈ S \ {s1}
to be b2 and another vertex s3 ∈ S \ {s1} as its leaf. To complete the fountain, let b− 1 leaves be
in T \ {t1} and the remaining leaf be in S \ {s1, s2, s3}.

Case 3: Unsurprisingly, this creates a red fountain in exactly the same manner as Case 1. ¨̂

Combining Equation 2 and Proposition 3.3, we get

Theorem 3.4.

r(Fb) =


8 b = 1

9 b = 2

2b + 3 even b ≥ 4

2b + 4 odd b ≥ 3.

Now, we address saturation.

Theorem 3.5. For b ≥ 1, Fb is unsaturated.

Proof. To show that Fb is unsaturated, we demonstrate that there is an edge e /∈ E(Fb), such that
any two-coloring of Kr(Fb) results in a monochromatic copy of Fb + e. We use the edge between a
leaf and a branch vertex.

Since the proof for the even and odd cases are completely analogous, we prove only the even
case. Suppose b is even. Recall the cases considered in the proof of Proposition 3.3. In Case 1 and
3, there is always a red edge e /∈ E(Fb) between a leaf in T and a branch vertex in S. For Case 2, a
blue edge e /∈ E(Fb) connects a leaf and branch vertex, which both lie in S. Thus, r(Fb) = r(Fb+e)
implying Fb is unsaturated for even b. ¨̂

4. Future Directions

Our next step is to tighten the bounds on Ramsey number for general tristars. For the m-regular
case, we conjecture r(Cm

3 ) = 4m+ 4. Once we do this, we want to see if we can generalize, perhaps
through the use of the probabilistic method, to bounds on r(C(m1, . . . ,mk)) for any k.
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