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Abstract. We prove an elementary but useful relationship between the logarithmic concavity of
a polynomial with positive coefficients and the location of that polynomial’s roots in the complex
plane.

1. Introduction

Our goal in this note is to connection the coefficients of a polynomial with positive coefficients
to the location of that polynomial’s roots in the plane. Loosely speaking, such a study is not a
new one, as a number of authors have considered the problem of locating the roots of a given
polynomial. Many studies take as their starting point the following classical (and easy-to-prove)
theorem, due to Gershgorin, in [2]:

Theorem 1.1. Let A = [aij ] be an n × n complex-valued matrix and for each i = 1, ..., n let
Ri =

∑

j 6=i |aij| be the sum of the moduli of the off-diagonal elements of the ith row of A. Then

each eigenvalue of A lies in the union of the circles defined by |z − aii| ≤ Ri (i = 1, ..., n). An
analogous result holds for the columns of A.

Given a polynomial p it is easy to construct the corresponding companion matrix, whose eigen-
values are precisely the roots of A. Thus Theorem 1.1 can be applied to give estimates for the roots
of a polynomial, placing them in the union of a collection of closed disks in C. Older results along
these lines are due to Wilf [6] and Bell [1]; more recently Zamfir [7] provides similar estimates.

All of the above results provide estimates on the moduli of the roots of a given polynomial.
However, in [4], Handelman presents a method for finding a region of the complex plane containing
all of the roots of a real polynomial p =

∑n
i=0 cix

i with non-negative coefficients, ci. The form

this region takes depends on the value of β(p) = infn−1
i=1

c2
i

ci−1ci+1
. Handelman’s work extends work

of Kurtz [5], in which conditions are founding guaranteeing the roots of a polynomial will be real.
Our main result (Theorem 1.2 below) provides a sort of converse to these last results, enabling us
to derive information about a polynomial’s coefficients provided its roots lie in a particular region
in C.

Recall that a sequence {ki}
n
i=0 of nonnegative numbers is said to be logarithmically concave (or

simply log concave) if for every i = 1, ..., n − 1 the inequality k2i ≥ ki−1ki+1 holds. A polynomial
p(z) =

∑n
i=0 kiz

i with nonnegative coefficients is called log concave if its coefficient sequence is log
concave. It is easy to show that a log concave polynomial is also unimodal : there exists an index
j such that

k0 ≤ k1 ≤ · · · ≤ kj−1 ≤ kj ≥ kj+1 ≥ · · · ≥ kn−1 ≥ kn.
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Our main result is as follows:

Theorem 1.2. Let p(z) =
∑n

i=0 kiz
i be a polynomial with positive coefficients. If every root

z = a+ bi of p satisfies both a ≤ 0 and b2 ≤ 3a2, then p is log concave.

Restated in terms of polar coordinates, Theorem 1.2 says that if every root lies in the sector
bounded by the rays θ = 2π

3
and θ = 4π

3
, then p is log concave. The flavor of this result is similar

to that of the following well-known theorem, appearing in [3]:

Theorem 1.3. Let p(z) =
∑n

i=0 kiz
i be a polynomial with all real roots. Then the sequence

(

ki/
(

n

i

)

)

is log concave.

Clearly the conclusion of our result is not as strong as that of Theorem 1.3, but the hypothesis
on the location of the roots of p is considerably weaker. Our proof, contained in the following
section, is completely elementary and requires only basic knowledge of complex arithmetic.

2. Proof of the main theorem

We prove Theorem 1.2 by induction on the degree, d, of p. To begin, note that every root
z = a+ bi satisfies a ≤ 0. We will also rely on the following lemma, which follows almost trivially
from the definition of log-concavity:

Lemma 2.1. Suppose the sequence {ki}
n
i=0 is log concave. Then for all i, j satisfying 0 < i ≤ j < n,

kikj ≥ ki−1kj+1.

We now proceed with our proof. To make our work slightly easier we note that we may assume
that p is monic, for dividing every term through by a positive leading coefficient will affect neither
the location of p’s roots nor p’s log concavity. The first nontrivial case is d = 2. If p factors as
(z− r)(z− s) for r, s ∈ R, then p(z) = z2 − (r+ s)z+ rs is log concave if and only if (r+ s)2 ≥ rs,
which reduces to r2 + s2 ≥ 3rs. Since r, s ≤ 0, this is trivially true. If the roots of p appear as a
conjugate pair a± bi, then p(z) = z2 − 2az + a2 + b2, which is log concave if and only if 3a2 ≥ b2,
which is precisely our hypothesis on the location of the roots z.

Now suppose we have proven our result for polynomials of degree at most n, and let deg(p) = n+1
be a polynomial whose roots satisfy the hypothesis of Theorem 1.2.

First consider the factorization p(z) = (z − r)q(z) for r real, and let ki represent the coefficient
on xi in q. Note that r ≤ 0. Multiplying out the righthand side and collecting powers, we find that
log-concavity obtains when

(1) (k0 − k1r)
2 ≥ −k0r(k1 − k2r),

(2) (ki − ki+1r)
2 ≥ (ki−1 − kir)(ki+1 − ki+2r) for i = 1, ..., n − 2, and

(3) (kn−1 − r)2 ≥ kn−2 − kn−1r.

Expanding (1) we obtain the inequality k20 − k0k1r+ k21r
2 ≥ k0k2r

2. Note that −k0k1r ≥ 0, and
by log-concavity of q, k21 ≥ k0k2. Thus the inequality holds. (3) follows in a similar fashion, using
the fact that −kn−1r ≥ 0, and that k2n−1 ≥ kn−2 = kn−2kn.

Expanding (2) we obtain

k2i − 2kiki+1r + k2i+1r
2 ≥ ki−1ki+1 − ki−1ki+2r − kiki+1r + kiki+2r

2.

By log concavity of q, it suffices to prove the inequality

2kiki+1 ≥ ki−1ki+2 + kiki+1,
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obtained by comparing the first and last terms on both sides and factoring out −r ≥ 0. But note
that this follows from Lemma 2.1.

Now we consider the factorization p(z) = (z − z0)(z − z0)q(z). Suppose z0 = a + bi; thus
p(z) = (z2 − 2az + a2 + b2)q(z). Expanding p as above, we again obtain several cases, examining
each consecutive triple of p’s coefficients in turn. Let p(z) =

∑

`ix
i.

Case 1: `2n+1 ≥ `n`n+2. Expanding the relevant coefficients in terms of the coefficients ki and
collecting like terms whenever possible we see we must prove the inequality

3a2 + k2n−1 ≥ b2 + kn−2 + 2akn−1.

The last term on the righthand side is negative, so removing it will yield a stronger inequality. Note
also that log-concavity of q implies k2n−1 ≥ knkn−2 = kn−2, so we may compare and discard these

terms and yield an even stronger inequality, namely 3a2 ≥ b2. But this is simply the hypothesis of
Theorem 1.2, so the inequality we desire holds in this case.

Case 2: `2n ≥ `n−1`n+1. Expanding and collecting like terms, we must show

k2n−1 + 3a2k2n−1 + 2b2kn−2 + (a2 + b2)2

≥ kn−2kn−3 + b2k2n−1 + 2a2kn−2 + 2akn−1kn−2 − 2akn−3 + 2a(a2 + b2)kn−1.

Since the last term on the lefthand side is positive and the last term on the righthand side is neg-
ative, the above follows from the stronger inequality obtained by removing these terms. Moreover,
log-concavity of q implies that k2n−2 ≥ kn−1kn−3, so we may remove the first term on either side
and reduce our problem to proving

3a2k2n−1 + 2b2kn−2 ≥ b2k2n−1 + 2a2kn−2 + 2akn−1kn−2 − 2akn−3.

The last two terms on the righthand side combine to give 2a(kn−1kn−2−knkn−3), which is negative,
by Lemma 2.1. Thus this term can be removed as well to obtain the stronger inequality

3a2k2n−1 + 2b2kn−2 ≥ b2k2n−1 + 2a2kn−2.

If |a| ≤ |b|, then our hypothesis b2 ≤ 3a2 implies the last inequality immediately, comparing the
corresponding terms on either side. Suppose then that |a| > |b|. Then

3a2k2n−1 = a2k2n−1 + 2a2k2n−1 ≥ b2k2n−1 + 2a2kn−2,

where the inequality follows by comparing the first terms directly and using log-concavity on the
second terms.

Case 3: `2i ≥ `i−1`i+1, i = 3, ..., n − 1. The coefficients in this case possess the general form

`i = ki−2 − 2aki−1 + (a2 + b2)ki.

After expanding and combining like terms, we must show

k2i−2 − 2aki−1ki−2 + 2(−a2 + b2)kiki−2 + (3a2 − b2)k2i−1 − 2a(a2 + b2)kiki−1 + (a2 + b2)
2
k2i

≥ ki−1ki−3 − 2akiki−3 + (a2 + b2)ki+1ki−3 − 2a(a2 + b2)ki+1ki−2 + (a2 + b2)
2
ki+1ki−1.

We begin by noting that our desired inequality follows from

−2aki−1ki−2 + 2(−a2 + b2)kiki−2 + (3a2 − b2)k2i−1 − 2a(a2 + b2)kiki−1

≥ −2akiki−3 + (a2 + b2)ki+1ki−3 − 2a(a2 + b2)ki+1ki−2.
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To see this, we compare the first and last terms on the left-hand side of the desired inequality
with the first and last terms on the right. By the log concavity of q, k2i−2 ≥ ki−1ki−3, and since

k2i ≥ ki+1ki−1, (a
2 + b2)

2
k2i ≥ (a2 + b2)

2
ki+1ki−1 follows.

Now, the previous inequality is a consequence of

2(−a2 + b2)kiki−2 + (3a2 − b2)k2i−1 ≥ (a2 + b2)ki+1ki−3.

We can see by Lemma 2.1 that kiki−1 ≥ ki+1ki−2 and ki−1ki−2 ≥ kiki−3, and because a ≤ 0,

−2a(a2 + b2)kiki−1 ≥ −2a(a2 + b2)ki+1ki−2 and − 2aki−1ki−2 ≥ −2akiki−3.

Finally, we must show that 2(−a2+b2)kiki−2+(3a2−b2)k2i−1 ≥ (a2+b2)ki+1ki−3 is true. Observe

that log concavity and Lemma 2.1 imply k2i−1 ≥ kiki−2 ≥ ki+1ki−3. Thus we have

2(−a2 + b2)kiki−2 + (3a2 − b2)k2i−1

≥ 2(−a2 + b2)kiki−2 + (3a2 − b2)kiki−2

= (a2 + b2)kiki−2

≥ (a2 + b2)ki+1ki−3.

We have thus proven that `2i ≥ `i−1`i+1 for all i = 3, ..., n − 1.

Case 4: `22 ≥ `1`3. Expanding and collecting like terms, we must show

(a2 + b2)k22 + 3a2k21 + 2b2k0k2 + k20
≥ (a2 + b2)k1k3 + b2k21 + 2a2k0k2 + 2a(a2 + b2)k1k2 − 2a(a2 + b2)k0k3 + 2ak0k1.

We omit the proof of this inequality, for it is precisely parallel to that of Case 2, including the need
to consider the subcases |a| ≤ |b| and |a| > |b|.

Case 5: `21 ≥ `0`2. Expanding and collecting like terms, we must show

3a2k20 + (a2 + b2)2k21 ≥ b2k20 + (a2 + b2)2k0k2 + 2a(a2 + b2)k0k1.

We omit the proof of this inequality as well, for it is precisely parallel to the proof of Case 1.

We have now proven the defining condition for log-concavity of p in every case, so our proof is
complete.
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